Transport of Magnetic Fields in Convective, Accreting Supernova Cores
نویسنده
چکیده
We consider the amplification and transport of a magnetic field in the collapsed core of a massive star, including both the region between the neutrinosphere and the shock, and the central, opaque core. An analytical argument explains why rapid convective overturns persist within a newly formed neutron star for roughly 10 seconds (> 10 overturns), consistent with recent numerical models. A dynamical balance between turbulent and magnetic stresses within this convective layer corresponds to flux densities in excess of 10G. Material accreting onto the core is heated by neutrinos and also becomes strongly convective. We compare the expected magnetic stresses in this convective ‘gain layer’ with those deep inside the neutron core. Buoyant motions of magnetized fluid are greatly aided by the intense neutrino flux. We calculate the transport rate through a medium containing free neutrons, protons, and electrons, in the limiting cases of degenerate or non-degenerate nucleons. Fields stronger than ∼ 10 G are able to rise through the outer degenerate layers of the neutron core during the last stages of Kelvin-Helmholtz cooling (up to 10 seconds post-collapse), even though these layers have become stable to convection. We also find the equilibrium shape of a thin magnetic flux rope in the dense hydrostatic atmosphere of the neutron star, along with the critical separation of the footpoints above which the rope undergoes unlimited expansion against gravity. The implications of these results for pulsar magnetism are summarized, and applied to the case of late fallback over the first 10 − 10 s of the life of a neutron star. Subject headings: supernova; dynamo; neutron star; stars-magnetically active Astrophysical Journal, in press
منابع مشابه
Which Massive stars are Gamma-Ray Burst Progenitors?
The collapsar model for gamma-ray bursts requires three essential ingredients: a massive core, removal of the hydrogen envelope, and enough angular momentum in the core. We study current massive star evolution models of solar metallicity to determine which massive star physics is capable of producing these ingredients. In particular, we investigate the role of hydrodynamic and magnetic internal...
متن کاملAsteroseismic Signatures of Evolving Internal Stellar Magnetic Fields
Recent asteroseismic analyses indicate the presence of strong (B 10 G) magnetic fields in the cores of many red giant stars. Here, we examine the implications of these results for the evolution of stellar magnetic fields, and we make predictions for future observations. Those stars with suppressed dipole modes indicative of strong core fields should exhibit moderate but detectable quadrupole ...
متن کاملAngular Momentum Transport via Internal Gravity Waves in Evolving Stars
Recent asteroseismic advances have allowed for direct measurements of the internal rotation rates of many sub-giant and red giant stars. Unlike the nearly rigidly rotating Sun, these evolved stars contain radiative cores that spin faster than their overlying convective envelopes, but slower than they would in the absence of internal angular momentum transport. We investigate the role of interna...
متن کاملMagnetic Field Evolution in Accreting White Dwarfs
We discuss the evolution of the magnetic field of an accreting white dwarf. We calculate the ohmic decay modes for accreting white dwarfs, whose interiors are maintained in a liquid state by compressional heating. We show that the lowest order ohmic decay time is (8–12) billion years for a dipole field, and (4–6) billion years for a quadrupole field. We then compare the timescales for ohmic dif...
متن کاملA topology for the penumbral magnetic fields
We describe a scenario for the sunspot magnetic field topology that may account for recent observations of upflows and downflows in penumbrae. According to our conjecture, short narrow magnetic loops fill the penumbral volume. Flows along these field lines are responsible for both the Evershed effect and the convective transport. This scenario seems to be qualitatively consistent with most exis...
متن کامل